Genom att surfa vidare godkänner du att vi använder cookies. Jag förstår

Algoritm för supersimulering

pommes-med-ketchup.jpg

Nu går det att köra vetenskapliga datorsimulationer hundratals gånger snabbare än traditionell datakod. Algoritmen som togs fram för datorspel kan bidra till utvecklingen av nya material som höjer vår levnadsstandard med hänsyn till miljön. Det visar en studie från Uppsala universitet.

En unik datoralgoritm gör det möjligt att beräkna miljarder slumpmässiga rörelser hos stora, sammanflätade molekyler, så kallade polymerer. Dessa finns överallt omkring oss, från plastkassar till flygplansvingar. Dessa långa atomkedjor för med sig både stora möjligheter och stora utmaningar. Till exempel organiska solceller respektive icke-nedbrytningsbar plastförorening.

Polymerer går att använda även i flytande form. Skillnaden mellan tomatpuré och ketchup är endast 0,5 procent xantangummi, som är en polymer som tillverkas av socker. Ketchupens konsistens, tjock men inte klibbig, beror på xantanets långa atomkedjor. De bildar ett sammanflätat nät som hindrar vätskan från att flyta ut. Samma princip används även för mer högteknologiska användningsområden, till exempel bläckstråleskrivare.

Mindre miljöpåverkan

Det finns dock ett sätt att minska mängden förtjockningstillsatser utan att påverka konsistensen som både reducerar kostnaden och minskar miljöpåverkan. Om ändarna på tre linjära atomkedjor sammanfogas till en punkt blir resultatet en så kallad stjärnpolymer. Den förgrenade strukturen gör att stjärnpolymerer bildar avsevärt tätare nät än linjära motsvarigheter av samma massa.

Med hjälp av en specialanpassad fysikalisk modell kan sådana simulationer nu köras hundratals gånger snabbare än traditionell datakod. Algoritmen körs på en grafikprocessor, GPU, och använder sig av texturkartläggning. Funktionen togs ursprungligen fram för datorspel, men används här för att beräkna molekylära krafter i en liten polymerdroppe. Metoden presenteras i studien 5D Entanglement in Star Polymer Dynamics av Airidas Korolkovas vid institutionen för fysik och astronomi vid Uppsala universitet.

30 000 grafikprocessorer

Genombrottet innebär helt nya möjligheter för de tidsskalor som kan användas i vetenskapliga beräkningar, och kan leda till nya användningsområden för den senaste generationens superdatorer. Till exempel den nyöppnade Summit i amerikanska Oak Ridge National Lab som har nästan 30 000 grafikprocessorer.

Källa: Uppsala universitet

3 oktober 2018 Uppdaterad 16 februari 2021 Reporter anne hammarskjöld digit Foto adobestock

Senaste nytt