Genom att surfa vidare godkänner du att vi använder cookies. Jag förstår

Bättre bröstcancervård med AI

Varje år överdiagnostiseras tusentals kvinnor i samband med mammografi och går igenom smärtsamma operationer i onödan. Nu ser forskare vid MIT att maskininlärning kan vara vägen till mer exakt diagnostik vid misstänkt bröstcancer.

8 december 2017 it i vården

AdobeStock_127812553_2.jpg

Varje år drabbas drygt 8 000 kvinnor i Sverige av bröstcancer och cirka 1 400 avlider. I USA dör 40 000 kvinnor. Ju tidigare cancer upptäcks, desto bättre prognos för behandlingen. Mammografi är den bästa undersökningsmetoden men den är inte perfekt och resulterar relativt ofta i felaktigt ”positiva” resultat som kan leda till onödiga biopsier och operationer av godartade, ofarliga tumörer och cystor.

När ett mammogram upptäcker en misstänkt tumör utförs en nålbiopsi för att bestämma om det är cancer. Ungefär 70 procent är godartade, 20 procent är maligna och 10 procent är så kallade högrisklesioner.

Överdiagnostiseras

En vanlig orsak till felaktiga positiva mammografiresultat är högrisklesioner som har onormala celler när de testas med nålbiopsi. I detta fall genomgår patienten normalt en operation för att ta bort tumören. I 90 procent av fallen visar det sig att den var godartad. Det innebär att tusentals kvinnor varje år överdiagnostiseras och går igenom oro, smärta och ärrbildande operationer helt i onödan.

Nu samarbetar forskare vid MITs institution för datavetenskap och artificiella intelligenslaboratorium, CSAIL, Massachusetts General Hospital och Harvard Medical School kring möjligheterna att använda maskininlärning för att förbättra upptäckt, diagnos och minska risken för onödiga ingrepp.

Gedigen utbildning

Som ett första projekt har forskarna utvecklat ett AI-system som använder maskininlärning för att förutsäga om en högrisklesion identifierad med nålbiopsi efter ett mammogram kommer att diagnosticeras som cancer i samband med en operation.

AI-modellen är tränad på information om mer än 600 befintliga högrisklesioner och söker efter mönster bland många olika data som demografi, ärftlighet, tidigare biopsier och patologirapporter.

30 procent färre operationer

När modellen med maskininlärning testades på 335 högrisklesioner diagnostiserade den 97 procent av misstänkt bröstcancer som malign och reducerade antalet godartade operationer med drygt 30 procent jämfört med etablerade tillvägagångssätt.

– Så vitt vi vet är detta den första studien där maskininlärning används för att skilja de fall som behöver kirurgi från de som inte gör det. Vi tror att detta kan hjälpa kvinnor att fatta mer välinformerade beslut om sin fortsatta behandling och kunna tillhandahålla mer individanpassade lösningar inom vården generellt, säger Constance Lehman, ansvarig för projektet och professor vid Harvard Medical School.

Källa: MIT

Senaste nytt

Högskola skapar digital tvilling

17 januari 2022

Högskolan i Gävle skannar samtliga sina byggnader för att skapa en så kallad digital tvilling av campus. Målet är att lokalerna ska kunna utnyttjas smartare.

En tredjedel av vår vakna tid i appar

14 januari 2022

4,8 timmar per dag och person tillbringas i telefonen, och Tiktok var den mest nedladdade appen 2021. Det är några av fynden i app-analysfirman App Annie.

Offentlig, delad data i fortsatt fokus för Digg

13 januari 2022

Regeringen har gett ett antal myndigheter i uppdrag att fortsätta arbetet med att upprätta en förvaltningsgemensam digital infrastruktur för informationsutbyte.

Log4j-hålet innebar rekord i cyberattacker 2021

13 januari 2022

Hos Check Points företagskunder ökade cyberattackerna med 50 procent per vecka under 2021. Störst ökning går att se i december när sårbarheten i Log4J upptäcktes.

Sveriges nya it-försvarsförband

12 januari 2022

Sverige ska få ett nytt förband i Linköping som ska stärka det svenska cybersförsvaret. Det meddelade ÖB Micael Bydén under Försvarsmaktens konferens Folk och Försvars rikskonferens.